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Introduction

 We show BERT/RoBERTa less prominently surface semantics...
e ... and the explicit incorporation of semantic information:

1. Improves downstream task performance

2. Helps guard against frequent yet invalid heuristics

3. Better captures nuanced linguistic phenomena

4. Increases training sample efficiency
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Probing RoBERTa with Semantics
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Probing RoBERTa with Semantics
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This technique is impossible to adopt. This technique is impossible to adopt.

Probing model (Shi et al., 2016; Adiet al., 2077) Ceiling model (Dozat and Manning, 2017, 2018)



Probing RoBERTa with Semantics

Probing - Ceiling; RoBERTa-base

-14

LAS/F1

-2

-23.5

-24.9

-28
Absolute A Relative A (%)

. SD (syntactic) | DM (semantic)




Can we use semantics to
augment pretrained transformers?
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Che et al. (2019)
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Schlichtkrull et al. (2017)

Semantics-Infused Finetuning (SIFT)




Semantics-Infused Finetuning (SIFT)
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Semantics-Infused Finetuning (SIFT)
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Experiments

* Dataset: GLUE

 Backbone: RoBERTa

e Parser: SOTA DM parser with 92.5 labeled F1
 Graph Encoder: RGCN

e 2 layers
» Hidden dimension € {256,512,768}

e Epochs € {3,10,20}, learning rate € {1 X 10742 % 1()_5}
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Analysis: When Do Semantic Structures Help?

e [wo datasets

« HANS tests if a model uses invalid reasoning heuristics

 GLUE diagnostics tests the model capability in various linguistic
phenomena

 Examine a model trained on existing NLI datasets with synthetic NLI
examples
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Analysis: HANS Lexical Overlap

The actor stopped the banker. doesnotentail The banker stopped the actor.

RoBERTa SIFT
68.1 71.0 (+2.9)

21



Analysis: HANS Subsequence

The judges heard the actor resigned.

does not entall

RoBERTa SIFT

The judges heard the actor.

25.8 29,5 (+3.7)

22



Analysis: HANS Constituent
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Analysis: HANS Constituent

If the actor slept, the senator ran. doesnotentail The actor slept.

Before the actor slept, the senator ran. entails

RoBERTa SIFT
37.9 37.6 (-0.3)
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Analysis: GLUE Diagnostics

| opened the door. entails The door opened.

Pred-Arg Structure |
does not entail | opened.

| have no pet puppy. entails | have no corgi pet puppy.
Logic .
does not entail | have no pet.

RoBERTa | SIFT
43.5 | 44.6 (+1.1)
36.2 | 38.3 (+2.1)
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Analysis: GLUE Diagnostics

| have a dog. entails | have an animal.

Lexical Semantics |
does not entail | have a cat.

| live in Seattle. entails | live in the U.S.

Knowledge . .. :
does not entail | live in Antarctica.

RoBERTa | SIFT
45.6 | 44.8 (-0.8)
28.0 | 26.3(-1.7)
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Analysis: Sample Efficiency

e Use the same downsampled MNLI training set to train RoBERTa & SIFT



Analysis: Sample Efficiency

e Use the same downsampled MNLI training set to train RoBERTa & SIFT
Absolute A (SIFT - RoBERTa) on MNLI

Accuracy
N w

N

ID. OOD.
7 100% (392k) M 0.5% (1963) M 0.2% (785) M 0.1% (392)
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Summary

Probing - Ceiling; RoBERTa-base
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Thank you!

arxiv.org/abs/2012.05395 github.com/ZhaofengWu/SIFT




